О происхождении видов

Опубликовано 4th Июль 2017 в рубрике Вероятности:

Какие из процессов запускают видообразование?
Подрежем эволюционное древо.
Отметим на графике число ветвей разной длины.
Это даст нам характерные кривые для различных видов.

Филогенетическое древо, отражающее процесс видообразования внутри определенной группы организмов

А потом, несколько лет назад, Пейджел осознал, что подходящие эволюционные деревья, дающие надежную информацию, вдруг стали доступны в огромных количествах – благодаря дешевым и быстрым методикам секвенирования ДНК. Он заметил: «Впервые у нас появился большой набор филогенетических деревьев, по-настоящему годящихся для того, чтобы проверить эту идею», – писал он. И тогда он и его коллеги Крис Вендитти и Эндрю Мид, засучив рукава, приступили к работе.
Команда обнаружила в научных публикациях более 130 эволюционных деревьев, полученных на базе анализа ДНК. Эти данные относились к самым разным представителям царств растений, животных и грибов. После отсева эволюционных деревьев сомнительной точности ученые получили список из 101 позиции, куда входили сведения о многообразных кошках, шмелях, соколах, розах и т. д.
Работая с каждым древом отдельно, они измерили длину ветвей между последовательными эпизодами видообразования – то есть, по сути, между развилками. Затем подсчитали число веток, имеющих ту или иную длину, и стали смотреть, какая получается картина. Если видообразование происходит путем естественного отбора через множество мелких изменений, можно предполагать, что длины ветвей лягут на колоколообразную кривую. Это будет либо кривая нормального распределения (если изменения суммируются, чтобы новый вид в конце концов перевалил через некоторый порог несовместимости), либо родственная ей кривая логарифмически-нормального распределения (если изменения «перемножаются», тем самым позволяя виду достичь порога быстрее).
К немалому удивлению исследователей, ни одна из этих кривых не соответствовала изучаемым данным. Логарифмически-нормальное распределение лучше всего описывало лишь 8 % случаев, а нормальное распределение вообще не подошло – оно не годилось ни для одного эволюционного древа. Зато группа Пейджела обнаружила, что для 78 % эволюционных деревьев распределение длин ветвей лучше всего описывается другой хорошо известной кривой – так называемого экспоненциального распределения.
Подобно колоколообразной, экспоненциальная кривая также имеет довольно простое объяснение, но оно несет тревожные вести для биологов-эволюционистов. Экспоненты мы получаем, когда имеем дело с ожиданием какого-то отдельного и нечастого события. Скажем, временные интервалы между последовательными телефонными звонками на ваш номер укладываются как раз на кривую экспоненциального распределения. Такая же история с периодом, который требуется для распада радиоактивного элемента, или с расстояниями между случайно сбитыми на автотрассе животными.
Для Пейджела вывод ясен: «Причина видообразования – не накопление событий, а отдельные редкие события, которые словно падают с неба. Видообразование становится чем-то произвольным. Когда одно из этих событий происходит, считайте, это поистине счастливый случай».
Редкостные события самого разного рода могут спровоцировать эпизод видообразования. И речь здесь не только о физической изоляции или о масштабных генетических изменениях, но и о случаях, напрямую связанных с окружающей средой, генетикой, психологией. Может сыграть роль, например, постепенное поднятие горного хребта, географически разделяющее вид надвое. Может сыграть роль мутация, заставляющая рыб размножаться близ поверхности, а не у дна. Может сыграть роль изменение в предпочтениях среди самок ящериц: вдруг им начинают нравиться самцы не с красными, а с голубыми пятнами.
Как подчеркивает Пейджел, главная идея, на которую указывают эти статистические данные, сводится к тому, что запускать видообразование должен какой-то единичный резкий поворот судьбы, непредсказуемый с точки зрения эволюции.
Пейджел добавляет: «Мы не утверждаем, будто естественного отбора не бывает или что Дарвин понял его неправильно». Как только вид расщепится надвое, естественный отбор должен позволить каждому из получившихся видов адаптироваться к тем конкретным условиям, в которых он оказался. Главное в том, что эта адаптация является следствием видообразования, а не одной из его причин. Ученый отмечает: «Полагаю, наша статья (и для многих других ученых было бы лицемерием утверждать, будто они когда-либо писали о том же) указывает на то, что видообразование зачастую может носить совершенно произвольный характер. Теперь можно не рассматривать видообразование как процесс постепенного втягивания в новую экологическую нишу при помощи естественного отбора».
Эта идея бросает свет на один из самых спорных аспектов эволюции – на ее предсказуемость. Если Пейджел прав, естественный отбор формирует существующие виды постепенно и до какой-то степени предсказуемо, но случайный характер видообразования означает, что громадное количество эволюционных изменений непредсказуемо. Его находки невольно заставляют вспомнить знаменитое высказывание Стивена Джея Гулда[4]: «Если бы мы могли перематывать историю назад и заново запускать эволюцию жизни на Земле, каждый раз мы получали бы иную картину».
Другие эволюционные биологи не очень-то спешили принять идею Пейджела с распростертыми объятиями. Некоторые считают ее любопытной, но нуждающейся в дальнейшей проверке. Вот реакция Арне Мурса из Университета Саймона Фрейзера (Ванкувер): «Эта модель, в центре которой единичные редкие события, превосходна как интерпретация – как возможная интерпретация». А некоторые подозревают, что анализ, проведенный Пейджелом, высветил лишь часть проблемы. «Этот анализ говорит об одной необходимой, но не достаточной составляющей видообразования, – отмечает Дэниэл Рабоски из Мичиганского университета. – Нужны две вещи: что-то вызывающее изоляцию и что-то вызывающее дифференциацию». Второй процесс (посредством которого две изолированные популяции изменяются достаточно сильно, чтобы мы могли рассматривать их уже как два разных вида), скорее всего, подразумевает постепенные адаптивные изменения под руководством естественного отбора.
Гипотеза, согласно которой появление новых видов имеет мало отношения к адаптации, как-то плохо сочетается с основополагающими идеями эволюционной науки. Одно из самых заметных препятствий здесь – то, что биологи-эволюционисты именуют адаптивной радиацией. Когда открываются благоприятные экологические возможности для вида (пример – первое заселение Галапагосских островов вьюрками из континентальной Южной Америки), вид, судя по всему, откликается на это, давая целый ряд новых форм, каждая из которых приспособлена к определенной экологической нише. Такие всплески видообра зования позволяют предположить, что организмам незачем обязательно ждать какого-то редкого события, которое подтолкнет их к видообразованию: их может побудить к нему естественный отбор.
В ходе своего исследования Пейджел намеренно искал признаки подобного эволюционного изобилия. Всплески видообразования проявили бы себя на эволюционных деревьях как обильное ветвление с нерегулярными промежутками – иными словами, наблюдалась бы чрезвычайно изменчивая во времени скорость трансформаций, порождающая несколько иную кривую. «Изначально я считал, что именно такая модель объяснит почти все эволюционные деревья», – вспоминает Пейджел.
Как выяснилось, он ошибался. «Когда это и правда работает, результаты впечатляющие, – отмечает он. – Но работает это лишь примерно в 6 % случаев. Похоже, это далеко не самый распространенный способ, каким группы видов распространяются по экологическим нишам».
У этой находки есть независимое подтверждение. Люк Хармон из Университета Айдахо в Москау и его коллеги изучили 49 эволюционных деревьев, чтобы выявить, случались ли всплески эволюционных изменений на ранней стадии истории той или иной биологической группы, когда незаполненные экологические ниши должны были бы встречаться чаще всего. Такая картина мало где наблюдается, отмечают ученые в статье, которую опубликовал журнал Evolution.
Если видообразование действительно представляет собой счастливую случайность, как это скажется на способах, которыми биологи его изучают? Фокусируясь на силах отбора, побуждающих два вида занять две разные экологические ниши (как это делают нынешние биологи), можно, по-видимому, многое узнать об адаптации, но не о видообразовании. Пейджел замечает: «Если вам действительно хочется понять, почему на свете так много грызунов по сравнению с другими видами млекопитающих, следует обратиться к списку потенциальных причин видообразования в той среде, которая окружает животное, а не исходить из мнения, что существуют бесчисленные ниши, в которые постоянно заталкиваются животные».
К примеру, грызуны, адаптировавшиеся к прохладному климату, будут иметь тенденцию к изоляции на высокогорьях при потеплении климата. Это может сделать их более склонными к видообразованию по сравнению с теми млекопитающими, которые адаптированы к более теплой среде. Точно так же и обитатели морей, чьи личинки живут на дне, могут быть более склонны к расщеплению на отдельные изолированные популяции, а значит, и к более частому видообразованию по сравнению с теми, чьи личинки – свободно плавающие. Именно это и обнаружил палеонтолог Дэвид Яблонски из Чикагского университета, изучая морских брюхоногих моллюсков. Подобным же образом виды, требующие сравнительно узкого диапазона условий среды или имеющие очень изощренные ритуалы выбора партнера, возможно, более склонны к случайному расщеплению на новые виды.
Какими могут быть другие подобные случаи? Пока неизвестно. Пейджел дает совет: «Хорошо бы составить списки всего, что могло бы приводить к видообразованию, и затем прогнозировать, у кого скорость видообразования будет высокой, а у кого – низкой». Если эти перечни помогут нам лучше понять размах эволюционной истории и ее особенности (как появились млекопитающие, почему на Земле так много видов жуков, отчего цветковые растения добились столь впечатляющего успеха), тогда мы убедимся, что Пейджел набрел на нечто фундаментальное.
Пока же его взгляды на видообразование, вероятно, помогут объяснить еще одно странное свойство живых существ. Секвенируя ДНК все новых и новых представителей дикой природы, биологи зачастую обнаруживают: то, что при поверхностном изучении представлялось одним видом, на самом деле являет собой два, несколько или даже много видов. Так, в мадагаскарских лесах живут 16 различных видов карликовых лемуров, причем все – в сходных местах обитания. Они делают схожие вещи и внешне очень похожи. Трудно объяснить существование этих таинственных видовых комплексов, если считать, будто видообразование – конечный результат естественного отбора, вызывающего постепенное распределение по различным экологическим нишам. Но если появление новых видов – результат счастливых случайностей, тогда нет никакой необходимости в экологических различиях между видами.
Эта идея явилась Пейджелу в Танзании, когда он сидел под деревом с твердой древесиной, наблюдая, как два вида мартышек-колобусов резвятся в кроне – примерно в 40 метрах над его головой. «Одни черно-белые, другие – красные, но больше между ними особых различий нет. Все они делают одни и те же вещи, – замечает Пейджел. – Помню, я подумал: видообразование – очень произвольная штука. А теперь наши модели подтверждают это».

комментарии: Закрыты

Комментарии закрыты.